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Using Kirchhoff transformation, we develop a Dirichlet–Neumann alternating iterative
domain decomposition method for a 2D steady-state two-phase model for the cathode
of a polymer electrolyte fuel cell (PEFC) which contains a channel and a gas diffusion layer
(GDL). This two-phase PEFC model is represented by a nonlinear coupled system which
typically includes a modified Navier–Stokes equation with Darcy’s drag as an additional
source term of the momentum equation, and a convection–diffusion equation for the water
concentration with discontinuous and degenerate diffusivity. For both cases of dry and wet
gas channel, we employ Kirchhoff transformation and Dirichlet–Neumann alternating itera-
tion with appropriate interfacial conditions on the GDL/channel interface to treat the jump
nonlinearities in the water equation. Numerical experiments demonstrate that fast conver-
gence as well as accurate numerical solutions are obtained simultaneously owing to the
implementation of the above-described numerical techniques along with a combined finite
element-upwind finite volume discretization to automatically control the dominant con-
vection terms arising in the gas channel.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Water management is critical to achieving high performance of polymer electrolyte fuel cells (PEFC). The polymer elec-
trolyte membrane requires sufficient water to exhibit a high ionic conductivity. During fuel cell operation, water molecules
migrate through the membrane under electro-osmotic drag, hydraulic permeation, and molecular diffusion, making it diffi-
cult to retain a high water content within the membrane. Generally, humidification is applied to the inlet gases of the anode
and/or cathode in order to keep the membrane hydrated. On the other hand, water is generated in the cathode due to the
electrochemical reaction of H+/O2. If the water generated is not removed from the cathode at a sufficient rate, cathode flood-
ing may result and the oxygen gas transport is hindered. Thus, a relatively dry air at the cathode inlet is sometimes helpful to
remove excessive water.

The importance of two-phase transport in a PEFC has been stressed in Ref. [32,33]. During fuel cell operation, especially at
high current densities, liquid water is likely to appear in the cathode, resulting in two-phase transport phenomena. The
transport processes then become significantly more complicated due to the coupled flow of liquid water and gaseous reac-
tants in porous media [31,4]. Wang et al. [44,45] studied the gas–liquid, two-phase flow and transport in the air cathode of
. All rights reserved.
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PEFCs including hydrogen and direct methanol fuel cells, and discussed single-and two-phase transport regimes based on the
multiphase mixture model previously developed by Wang [43] for two-phase flow and multicomponent transport in porous
media. Pasaogullari and Wang [25] presented a predictive capability for flooding in multidimensional, full PEFC with realistic
hydrophobic GDL, and described a two-phase, multidimensional PEFC model to investigate the effects of two-phase trans-
port and flooding on PEFC performance, particularly the effects of the flow rate (i.e. the flow stoichiometry) and the inlet
humidity. This two-phase PEFC model is represented by a nonlinear coupled system for velocity and concentration fields,
which typically includes a modified Navier–Stokes equation with Darcy’s drag as an additional source term of the momentum
equation, and a convection–diffusion equation for water concentration.

However, the water transport equation in this two-phase PEFC model may feature a discontinuous and degenerate diffu-
sivity, especially in the case of dry gas channels (see (2.6) and Fig. 2.1). For standard finite element or finite volume methods
combining with standard Picard’s iteration, which are carried out in Ref. [25] and are also generally employed in commercial
fluid solvers, the significant discontinuity and degeneracy of the diffusion coefficient introduces oscillating nonlinear itera-
tions to the water transport equation, and make the standard numerical approaches fail to attain convergent nonlinear iter-
ations [36]. The dominant convection coefficient is another difficulty in obtaining stable and convergent iteration for Navier–
Stokes equation and convection–diffusion equation in gas channels.

Therefore, to obtain physically reasonable solutions, mass balance errors are usually checked instead of the convergence
criteria of numerical schemes. However, in the sense of numerical approximation, mass balance is only the necessary con-
dition of a convergent numerical iteration, not the sufficient condition. For robust and efficient numerical solutions, we need
to design new numerical approaches and achieve truly convergent numerical iterations.

The main purpose of this paper is to develop new numerical techniques for the steady-state two-phase model of PEFCs, as
presented in Ref. [25], for both cases of a dry and a wet gas channel. In this model much of the difficulty lies in how to effi-
ciently deal with the discontinuous and degenerate diffusivity arising in the water concentration equation.

We employ Kirchhoff transformation [37,9,1,7,2,29,46] to specifically handle the discontinuous and degenerate diffusivity
arising in the two-phase transport model of a PEFC with the intention to accelerate the nonlinear iteration and obtain accu-
rate solution. We have successfully dealt with this problem in the case of dry channel in terms of Kirchhoff transformation for
two-phase PEFC model [37]. However, when the gas channel turns out to be wet, the diffusivity of water concentration equa-
tion is discontinuous across the interface of GDL and gas channel. Thus the new variable after introducing Kirchhoff trans-
formation becomes discontinuous as well, which makes the numerical solution incorrect. To overcome this problem, in
this paper we present Dirichlet–Neumann alternating iterative domain decomposition method [6,27] to solve the reformu-
lated two-phase PEFC model derived from Kirchhoff transformation, and recover the accurate numerical solution as well
as fast nonlinear iteration. On the other hand, Dirichlet–Neumann alternating iterative domain decomposition method can
also work for the case of dry gas channel as well. Hence, this method covers both cases.

The rest of this paper is organized as follows. First, we introduce the governing equations for the steady-state two-phase
transport problem in both gas channel and GDL in Section 2. In Section 3, we describe the reformulated water concentration
equation using Kirchhoff transformation and address how efficiently it deals with the discontinuous and degenerate diffusiv-
ity. The Dirichlet–Neumann alternating iterative domain decomposition method will be introduced in Section 4. In order to
efficiently control the dominant convection terms arising in the gas channel due to the large velocity therein, we introduce a
combined finite element-upwind finite volume method [11,13,12] in Section 5, where we specifically discretize the convec-
tion term with the upwind finite volume scheme, and simultaneously, apply finite element discretization to the remaining
terms. The entire combined finite element-upwind finite volume discretizations are given in Section 6, where we basically
employ mixed finite element method to discretize the momentum and continuity equations, solve an equivalent semilinear
convection–diffusion equation with simple Laplacian term as diffusion for the original water concentration equation via
Dirichlet–Neumann alternating iteration method, and apply upwind finite volume scheme to the dominant convection terms.
Numerical experiments with a practical set of boundary conditions are given in Section 7 for both cases of a dry and a wet gas
channel, demonstrating that our numerical schemes significantly improve the efficiency and accuracy of computational per-
formance. On the other hand, the similar numerical results with [37] are also obtained here for the case of a dry gas channel,
Fig. 2.1. C(C).
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indicating that Dirichlet–Neumann alternating iteration method can solve the case of a dry gas channel, simultaneously, de-
spite that it is specifically designed for the case of wet gas channel.

2. Steady-state two-phase transport model in PEFC cathode

Based on [25], in this section we describe the governing equations for 2D steady-state two-phase transport problem in the
cathode of PEFC, and define the relevant physical parameters and coefficients as well as their boundary conditions. All of the
involved parameters are listed in Table 2.1 in Section 2.2.

2.1. Governing equations

We introduce the governing equations for flow and species concentration fields. These nonlinear equations are strongly
coupled via velocity u! and concentration C.

Flow equations. For flow field with velocity u! and pressure P as unknowns, we have the following modified Navier–Stokes
equations:
Table 2
Propert

Parame

Water
Water
Saturat
Vapor d
Liquid
Surface
Contact
Porosit
Permea
Kinema
Kinema
Faraday
Current
Current
1
e2r � ðq u!u!Þ ¼ r � ðlr u!Þ �rP þ Su ðaÞ
r � ðq u!Þ ¼ 0 ðbÞ

(
ð2:1Þ
where q is density and l the effective viscosity, both functions of concentration C as defined in Section 2.2, and e the porosity
of air cathode. Here (2.1a) represents a modified momentum equation, in which the additional source term Su physically rep-
resents Darcy’s drag and is defined as follows:
Su ¼ �
l
K

u! ð2:2Þ
where K is a position-dependent permeability in a porous cathode, defined as
K ¼
þ1 in gas channel;
KGDL ¼ 10�12 in GDL;

�
ð2:3Þ
This definition of K implies that the gas channel is considered to be completely permeable, while GDL is described as a porous
medium with small permeability KGDL.

Darcy’s drag Su is developed from Darcy’s Law in a porous GDL:
u!¼ �KGDL

l
rP ð2:4Þ
when K =1 in gas channel, Su = 0 according to (2.2). Therefore (2.1a) reduces identically to the classical momentum equa-
tion. On the other hand, in GDL (2.1a) becomes Darcy’s law because the permeability KGDL = 10�12 is so small that all the
remaining terms in (2.1a) become negligible, except for the pressure gradient vector which drives flow.

By virtue of this additional source term Su, the momentum balance equation is valid in both GDL and gas channel, reduc-
ing to the Darcy’s law for two-phase flow in a porous GDL with a small permeability or the Navier–Stokes equation in a gas
channel with the porosity being unity and the permeability being infinity. Note that u! is the intrinsic velocity vector based
on the open pore area only. (2.1) is also known as Darcy–Brinkman–Forchheimer model [18], which is typically used to model
the flow inside coarse porous media. [8] employed finite-difference methods for such model involving the Navier–Stokes
equations with an added Darcy term. Xie et al. [47] designed and analyzed uniformly stable finite element methods for
the linear case of (2.1) with single phase flow and no convection term.
.1
y parameters

ter Symbol Value Unit

vapor diffusivity Dgas 2.6 � 10�5 m2/s
molecular weight M 0.018 kg/mol
ed water concentration Csat 16 mol/m3

ensity qg 0.882 kg/m3

water density ql 971.8 kg/m3

tension r 0.0625 kg/s2

angle between two-phases hc
2
3 p

y of GDL e 0.7
bility of GDL KGDL 1.0 � 10�12 m2

tic liquid water viscosity ml 3.533 � 10�7 m2/s
tic vapor viscosity mg 3.59 � 10�5 m2/s
constant F 96,487 A�s/mol
density at the left end I1 20,000 A/m2

density at the right end I2 10,000 A/m2
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The advantage of the modified Navier–Stokes equations (2.1) is that we can simultaneously solve Darcy–Navier–Stokes flow
in one single domain, instead of two-domain approach where Beavers–Joseph–Saffman interface condition [5,30,15] and con-
tinuity of mass flux and continuity of normal stress must be employed at the GDL/channel interface. Obviously the single do-
main approach is easier to implement, especially in simulation of three-dimensional complete fuel cell problems.

Species concentration equation. Due to the coexistence of a single-phase zone and a two-phase zone and the coupled flow
of liquid water and gaseous reactants in porous media, the water conservation equation turns out to be the most important
and difficult species equation to solve for fuel cell simulation. Therefore, for species concentration equations, in order to fo-
cus on the water management issue, without loss of generality, we consider a single component model by taking water as
the only species in the simplified concentration equation.

The water concentration equation is given as follows [25]:
r � ðcc u!CÞ ¼ r � ðCðCÞrCÞ; in GDL; ðaÞ
r � ð u!CÞ ¼ r � ðDeff

g rCÞ; in gas channel; ðbÞ

(
ð2:5Þ
where cc is the advection correction factor defined in Section 2.2. The diffusivity C(C) in GDL is defined as
CðCÞ ¼
Ccapdiff ; if C P Csat;

Deff
g ; if C < Csat:

(
ð2:6Þ
Here Csat is the saturated water concentration, Deff
g ¼ e1:5Dgas the effective water vapor diffusivity in the gas phase region, and

Ccapdiff a capillary diffusion coefficient in the two-phase region, which is defined as a function of liquid saturation s:
Ccapdiff ¼
mf l

M
� Csat

qg

 !
M

ql � CsatM

� �
klkg

m
r cos hcðeKÞ1=2 dJðsÞ

ds

�����
����� ð2:7Þ
Here s 2 [0,1] denotes the liquid saturation throughout this paper, and is a fundamental variable in multiphase mixture (M2)
model [43,45], having coequality with water concentration as
C ¼ qls
M
þ Csatð1� sÞ; hence s ¼ ðC � CsatÞ=

ql

M
� Csat

� �
: ð2:8Þ
J(s) is the Leverett function, given by the following relation [22,24,25]
JðsÞ ¼ 1:417ð1� sÞ � 2:120ð1� sÞ2 þ 1:263ð1� sÞ3; if hc < 90�;
1:417s� 2:120s2 þ 1:263s3; if hc > 90�:

(

So, despite the complicated definition Ccapdiff is a rational function of concentration C.
According to the definitions of physical parameters and coefficients in Section 2.2, one can easily see that Ccapdiff = 0 when

C = Csat, or s = 0. So Ccapdiff, and further C(C), is degenerate at Csat.
The behavior of diffusivity function C(C) can be better understood in Fig. 2.1, where C(C) is clearly indicated as a discon-

tinuous and degenerate function with respect to C. Csat = 16 mol/m3 (for 80 �C) is the typical point at which discontinuity and
degeneracy occur for C(C) at the same time.

Governing Eqs. (2.1) and (2.5), together with the definitions of physical coefficients and parameters in Section 2.2 and the
boundary conditions in Section 2.3, constitute a 2D steady-state two-phase transport model for the cathode of a polymer
electrolyte fuel cell.

2.2. Coefficients and parameters

The physical coefficients and mixture variables arising in the governing Eqs. (2.1), (2.5) and the definitions of their coef-
ficients are defined as follows:

� Density: q = qls + qg(1 � s).
� Relative mobilities: klðsÞ ¼ krl=ml

krl=mlþkrg=mg
; kgðsÞ ¼ 1� klðsÞ.

� Relative permeabilities: krl = s3, krg = (1 � s)3.
� Kinematic viscosity: m ¼ ðkrl

ml
þ krg

mg
Þ�1.

� Effective viscosity: l ¼ ql �sþqg �ð1�sÞ
krl
ml
þkrg

mg

.

� Advection correction factor:
cc ¼
qðklmf l þ kgmfgÞ

qlmf lsþ qgmfgð1� sÞ ; ð2:9Þ
where mfl = 1 and mfg ¼ CsatM
qg

are mass fractions of liquid water and gaseous water, respectively. cc is a continuous function of

concentration. In the gas channel we assume that water only exists in the gaseous phase, so s = 0, and the advection
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correction factor cc defined above becomes unity, which guarantees the convection term in (2.5) is continuous across the
GDL/channel interface and furthermore, continuous in the entire domain, specifically for a dry gas channel. However, if
the gas channel is wet, neither diffusivity nor convection coefficient in (2.5) is continuous across the GDL/channel interface;
though, the mass flux is always continuous. We will discuss this issue in Section 3.

Other property parameters are referred to Table 2.1.

2.3. Computational domain and boundary conditions

We specifically consider that governing Eqs. (2.1) and (2.5) take place in the cathode of a PEFC which consists of a gas
diffusion layer and a gas channel, as schematically shown in Fig. 2.2. The horizontal x-axis represents the flow direction
and the vertical y-axis points in the through-plane direction. The geometric sizes of this computational domain are marked
in Fig. 2.2 as well, where the physical width of the GDL and gas channel are dGDL = 3 � 10�4 m, dCH = 10�3 m, respectively, in
comparison with the length in flow direction lPEFC = 7 � 10�2 m. The large aspect ratio of the channel length to width, about
1:100, give rise to a thin film flow structure.

For the simplicity of notation, in Section 4 the GDL and gas channel are represented by X1 and X2, respectively. Thus
X = X1 [X2. At the inlet of the gas channel ((oX)1 in Fig. 2.2), constant flow rate and water concentration are specified.
At the outlet ((oX)3 in Fig. 2.2), both velocity and concentration fields are assumed to be fully developed. Hence based on
this computational domain, the boundary conditions are indicated as follows.

For flow field Eq. (2.1), the following boundary conditions hold with respect to velocity u!:

� (oX)1: at channel inlet, the horizontal component of velocity ux = ux—inlet (m/s) and its vertical component uy = 0, where
uxjinlet will be given as a parabolic-like function in (6.9), where uin is employed to represent the maximum value of uxjinlet.

� (oX)3: at channel outlet, ðPI � lr u!Þ � n!¼ 0
� (oX)5: at the bottom wall, u!¼ 0,
� (oX)2, (oX)4, (oX)6: at side and top walls, u!¼ 0.

For water concentration (2.5), the following boundary conditions hold with respect to concentration C:

� (oX)1: at channel inlet, C = Cin(mol/m3),
� (oX)2, (oX)3, (oX)4, (oX)5: at the bottom and side walls and channel outlet, rC � n!¼ 0,
� (oX)6: at the top wall, the liquid water mass flux condition is given by:
CðCÞrC n!� cc u!C � n!¼ IðxÞ
2F

; ð2:10Þ
where the Dirichlet boundary condition at (oX)1 is usually set as Cin < Csat to indicate the input of gaseous component in two-
phase PEFC model. At the membrane/cathode surface ((oX)6), the nonhomogeneous Neumann boundary condition is given
to simulate oxygen reduction reaction occurring in catalyst layer and generating liquid water mass flux [42], where I(x) is the
volumetric transfer current of the reaction (or transfer current density) defined by a linear function as follows:
IðxÞ ¼ I1 � ðI1 � I2Þ
x

lPEFC

� �
A

m2

� 	
ð2:11Þ
where I1, I2 are prescribed in Table 2.1. Eq. (2.11) is an approximation of the current density distribution for our simplified
two-phase PEFC model without solving for an electrochemical model. Considering the positive water flux boundary condi-
tion (2.10) on the top wall and zero source in (2.5), the total source is eventually positive for the entire domain.

To result in a wet gas channel, there are two operating conditions we may adjust. One is to reduce the gas inlet speed uin,
consequently decreasing the convection effect in the gas channel and allowing liquid water to reach the interface of porous
GDL and open channel, forming liquid droplets. The other way for liquid water to appear on the GDL/channel interface is to
Fig. 2.2. Domain.



Fig. 2.3. Iteration history with standard finite element method and Picard’s iteration for (2.5).
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increase the current density I(x) on the membrane/cathode surface; with more water generated from the oxygen reduction
reaction, a wet gas channel results. Therefore, in our numerical experiments later in Section 7, we will simulate these two
different cases of wetted gas channel with smaller inlet velocity uin and larger current densities I1, I2, respectively.

So far we addressed 2D steady-state two-phase transport model (2.1), (2.5) in the cathode of a PEFC for water component
only, and appropriately present flux boundary condition to simulate the chemical reaction taking place at the membrane/
cathode interface. In summary, this model consists of highly nonlinear transport equations with discontinuous and degen-
erate diffusion in GDL as well as dominant convection in the gas channel, thus leading to numerical instabilities in nonlinear
iteration, as shown in Fig. 2.3. This iteration history is obtained by standard linear finite element method with Picard’s iter-
ation. In the following sections we will study and present new numerical techniques to overcome these instabilities.

3. Kirchhoff transformation

An efficient discretization scheme to deal with the nonlinear discontinuous and degenerate diffusivity C(C) is the key to
make the entire nonlinear iteration converge quickly. To this end, using Kirchhoff transformation [9,1,7,2,29,46], we are able
to reformulate (2.5) into a semilinear convection–diffusion equation with simple Laplacian term as diffusion with respect to a
new variable, where the nonlinearity, discontinuity and degeneracy arising in diffusivity C(C) all disappear. Instead, we need
to implicitly solve inverse Kirchhoff transformation in order to obtain the desired water concentration.

We define a new variable W in terms of Kirchhoff transformation
WðCÞ ¼
Z C

0
CðxÞdx: ð3:1Þ
Hence W is a function of concentration C, there exists no explicit expression for inverse Kirchhoff transformation (3.1), so a
method needs to be found to compute C from W.

Notice however that for the water concentration equation in a dry channel (2.5b) with a constant diffusivity Deff
g , we have

the specific Kirchhoff transformation as follows
W ¼
Z C

0
Deff

g dx ¼ Deff
g C; ð3:2Þ
where Kirchhoff’s variable W is a linear function of C in gas channel, or inversely,
C ¼ ðDeff
g Þ
�1W: ð3:3Þ
Thus the full Kirchhoff transformation for diffusivity C(C) in water concentration Eq. (2.5) is given as follows:
W ¼
R C

0 CðxÞdx in GDL;

Deff
g C in Channel:

(
ð3:4Þ
Consequently we have the following gradient of W by differentiating both sides of (3.4) with respect to spatial variables
rW ¼
CðCÞrC in GDL;

Deff
g rC in Channel:

(
ð3:5Þ
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Under certain operating conditions, two-phase flow appears in the cathode channel, i.e. the wet channel. This is espe-
cially under a small inlet velocity of air flow, then sequentially a slow convection. On the other hand, as a result of both the
electrochemical reaction and the water transport across the membrane from the anode, higher cell current density may
give birth to more liquid water at membrane/cathode surface and result in the expansion of two-phase zone. Thus, its
evaporation front propagates towards the GDL/channel interface, and eventually liquid water may come into the gas
channel.

In this paper we specifically look at the case of a wet gas channel and attempt to develop an efficient numerical method
for this case, moreover, the method should also be able to cover the case of a dry gas channel.

In view of Eq. (2.5), the diffusivity in the gas channel remains constant Deff
g , while the diffusivity C(C) in the two-phase

zone of GDL is less than Deff
g (see Fig. 2.1). Therefore the diffusivity of (2.5) is discontinuous across the GDL/channel interface.

Further, according to (3.4), the resulted Kirchhoff’s variable W is discontinuous as well at the interface of GDL and channel.
However, concentration C is always continuous everywhere in the fuel cell, including at the GDL/channel interface, so is

the mass flux of (2.5) such that
ðCðCÞrC � cc u!CÞ � n2

! ¼ ðDeff

g rC � u!CÞ � n2

! at GDL=gas channel interface; ð3:6Þ
where n2

! is the outer normal vector pointing to GDL (X1) from the gas channel (X2) across the interface.

In the following we still reformulate (2.5) with Kirchhoff transformation (3.4) and properly impose the interfacial condi-
tions on the GDL/channel interface as mentioned above. By virtue of (3.4) and (3.5), and considering continuity Eq. (2.1b) in
the gas channel, we can reformulate (2.5) to be an equivalent water concentration equation system with respect to Kirch-
hoff’s variable W, along with corresponding interfacial and outer boundary conditions, namely:
DW1 ¼ r � ðcc u!C1Þ in X1 ðaÞ
�DW2 þr � ððDeff

g Þ
�1 u!W2Þ ¼ 0 in X2 ðbÞ

C1 ¼ C2; on R ðcÞ
ðrW2 � ðDeff

g Þ
�1 u!W2Þ � n2


! ¼ �ðrW1 � ccC1 u!Þ � n1

! on R ðdÞ

W2 ¼W in on ð@XÞ1 ðeÞ
@W1
@n � cc u!C1 � n!¼ I

2F on ð@XÞ6 ðf Þ
@W1
@n ¼

@W2
@n ¼ 0 elsewhere on @X ðgÞ

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð3:7Þ
where ni
!ði ¼ 1;2Þ is the outer normal vector of Xi across R. Hereinafter, we employ notation R to denote the interface of GDL

and gas channel. Obviously n2

! ¼ � n1


!. Wi,Ci,(i = 1,2) denote the restriction of W and C in X1 and X2, respectively. u! is
known velocity which is derived from (2.1). Win is the boundary value of W at channel inlet and is defined as W in ¼
Deff

g Cin, according to the Dirichlet boundary condition of concentration C at inlet and (3.2).
We observe that only one Laplacian term is involved on the left hand side of (3.7a) and (3.7b), with the original discon-

tinuous and degenerate diffusivity C(C) hidden inside the Kirchhoff transformation (3.1). This significantly reduces the dif-
ficulty of nonlinear iteration of the reformulated equation and makes fast convergence possible. Now the only nonlinearity
remains on the right hand side of (3.7a), i.e. the convection term r � ðcc u!CðWÞÞ, where C is the implicit and nonlinear func-
tion of W in terms of inverse Kirchhoff transformation.

Indeed (3.7a) is only a semilinear equation because one single C stays on the right hand side which depends on W via
inverse Kirchhoff transformation, an implicit function. Picard’s method is sufficient to linearize it. In each iteration step, C
is updated by inverse Kirchhoff transformation from W. In contrast to (3.7a), (3.7b) is just a linear equation in the gas channel
where velocity u! is relatively large thus resulting in the dominant convection term in (3.7b). So we cannot treat this con-
vection term as an additional source term but reformulate it into an explicit convection form of W via linear Kirchhoff trans-
formation (3.3) and discretize it with upwind scheme to stabilize the numerical solution.

In view of the weak nonlinearity in (3.7), we expect fast convergence of nonlinear iteration for W, and consequently for C,
provided that an accurate and efficient method is devised to carry out the inverse Kirchhoff transformation of (3.1).

It is nontrivial to compute this inverse Kirchhoff transformation directly [41,40]. One relatively simple but costly approach
is Look-Up Table (LUT) method, namely, searching a corresponding value of C in a sorted data table between W and C by
bisection. To this end, we need to set up a relational data table first by discretizing interval [0,Cmax] and computing W at
each discrete point of C in this interval in terms of Kirchhoff transformation (3.1), where Cmax is the predictable upper-bound
concentration due to the facts 0 6 s 6 1 and (2.8). Then by bisection search and linear interpolation, we can quickly find out
the corresponding value of C in this data table at any certain value of W. The finer the table is, the more accurate the solution
C but more computational costs on bisectional search.

The left figure of Fig. 3.1 shows that W change very little when C ! Cþsat ¼ 16þ, implying that a small change in W in this
region results in a large difference in C. Therefore we have to sufficiently refine the relational table especially around Csat in
order to accurately obtain the concentration C from W. Large computational cost results from the frequent search of such
extra fine relational data to update C for each single value of W. Therefore, designing a robust and efficient method to eval-
uate C from W is necessary.



Fig. 3.1. W(C) (left)in the region of C ? Csat = 16; (right)in two-phases region (C P Csat = 16).
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Considering W(C) is a strictly increasing continuous function with respect to C, in the following we develop a method
which is much more efficient than the LUT method for evaluation of both Kirchhoff transformation and its inverse. We first
notice the trivial case that if C 6 Csat or W 6Ws �

R Csat

0 CðxÞdx, then W is just a simple linear function of C by (3.2).
The nontrivial case is when C > Csat or W > Ws, in this case
WðCÞ ¼Ws þWdðCÞ ð3:8Þ
where WdðCÞ ¼
R C

Csat
Ccapdiff ðxÞdx.

The first simple observation is that we can explicitly evaluate Wd(C) as an elementary function of C by determining the
definite integration of Ccapdiff(x) with any symbolic operation software such as Mathematica, Matlab or Maple. This is feasible
since capillary diffusion coefficient Ccapdiff(C) is well defined in (2.7) with respect to concentration C only. In consequence, the
inverse Kirchhoff transformation can be evaluated by applying Newton’s method to (3.8) for any given W > Ws. Observing that
the derivative of Wd(C) is just Ccapdiff(C), we have the following Newton’s scheme for inverse Kirchhoff transformation:
Ckþ1 ¼ Ck �Ws �W þWdðCkÞ
Ccapdiff ðCkÞ

; k ¼ 0;1;2; . . . ð3:9Þ
where each term is given or computable. This scheme converges provably in very few steps with a proper initial guess C0,
according to the local quadratic convergence theory of Newton’s method. Newton’s approach (3.10) indeed provides an effi-
cient way to evaluate C from W when C > Csat, even when C ! Cþsat. For the case of C 6 Csat, linear function (3.3) is sufficient
to get desired concentration.

In practice, the denominator Ccapdiff (Ck) in (3.9) approaches zero if Ck approaches Csat in the two-phase region. In order to
avoid this, a relative small positive number e may be added to Ccapdiff (Ck) as follows:
Ckþ1 ¼ Ck �Ws �W þWd;eðCkÞ
Ccapdiff ðCkÞ þ e

; k ¼ 0;1;2; . . . ð3:10Þ
where Wd;eðCÞ ¼
R C

Csat
ðCcapdiff þ eÞðxÞdx ¼

R C
Csat

Ccapdiff ðxÞdxþ eðC � CsatÞ.
In comparison with Look-Up Table method, the computational cost of Newton’s approach is much smaller due to its fast

convergence, with an approximate solution obtained under the tolerance of relative error 10�10 within averagely 12 itera-
tions. In Section 6 we will implement inverse Kirchhoff transformation in terms of Newton’s method in fully implicit finite
element-upwind finite volume discretization for (2.1) and (2.5).

Notice that the interfacial conditions at the GDL/channel interface (3.7c) and (3.7d) or (3.6) are always true no matter the
gas channel is dry or wet, therefore (3.7) holds for both cases of dry and wet channels.

4. Nonlinear Dirichlet–Neumann alternating iteration

In the case of a wet gas channel, owing to the discontinuity of diffusivity at the GDL/channel interface, a new disconti-
nuity is introduced for Kirchhoff’s variable W at the interface in reformulated water concentration Eq. (3.7), i.e. W1 – W2on
part of R where C P Csat.

In order to overcome the discontinuity of W at the GDL/channel interface for a wet channel, and at the same time main-
tain C and the mass flux continuous across R, as shown in (3.7), we consider the Dirichlet–Neumann alternating iteration
algorithm [6] applied to the reformulated water concentration Eq. (3.7).

First of all, for the simplicity of notations, let us redefine Kirchhoff transformation as follows:
WiðxÞ :¼ jiðCiðxÞÞ ¼
Z CiðxÞ

0
CiðcÞdc inXi; i ¼ 1;2; ð4:1Þ
where ji(i = 1,2) represent the restriction of Kirchhoff transformation in X1 (GDL) and X2 (gas channel), respectively. More-
over, C1 = C(C) and C2 ¼ Deff

g , as defined in (2.5). Hence,
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Ci ¼ j�1
i ðWiÞ; i ¼ 1;2; ð4:2Þ
where j�1
1 is implemented by (3.10), and j�1

2 is defined by (3.3).
In the case of a wet channel, if C P Csat somewhere on R, then C1 = Ccapdiff by (2.6). However, since C2 ¼ Deff

g – C1;

W1 – W2 is then introduced in that place on R. This does not happen to the case of a dry channel in which C < Csat every-
where on R and thus C1 = C2.

Considering the continuity of C on R:
C1jR ¼ C2jR or j�1
1 ðW1jRÞ ¼ j�1

2 ðW2jRÞ ð4:3Þ
and the equal mass flux of (3.7) across R:
ðrW1 � ccC1 u!Þ � n1

! ¼ �ðrW2 � u!C2Þ � n2


! ¼ �ðrW2 � ðDeff
g Þ
�1 u!W2Þ � n2


!
; ð4:4Þ
Thus we are able to split (3.7) into two subproblems as follows.
Q1: Dirichlet-type interfacial boundary value subproblem: By means of Kirchhoff transformation ji(i = 1,2), we define the fol-

lowing well-posed P.D.E. in subdomain X1 (GDL), which is equipped with Dirichlet boundary condition on interface R. Given
u!2 ½H2ðXÞ�2 and W2 2 H2(X2), find W1 2 H2(X1), such that
ðQ1Þ

DW1 ¼ r � ðcc u!j�1
1 ðW1ÞÞ in X1 ðaÞ

W1 ¼ j1 j�1
2 ðW2Þ

� �
on R ðbÞ

@W1
@n � cc u!j�1

1 ðW1Þ � n!¼ I
2F on ð@XÞ6 ðcÞ

@W1
@n ¼ 0ð@XÞ2; ð@XÞ4 ðdÞ

8>>>><
>>>>:

ð4:5Þ
where (4.3) is applied to get (4.5b), W2 will be iteratively updated in (4.5b) by solving the following subproblem Q2.
Q2: Neumann-type interfacial boundary value subproblem: In subdomain X2 (gas channel), we define the following well-

posed P.D.E. with Robin-like boundary condition on R. Given u!2 ½H2ðXÞ�2 and W1 2 H2(X1), find W2 2 H2(X2), such that
ðQ2Þ

�DW2 þr � ððDeff
g Þ
�1 u!W2Þ ¼ 0 in X2 ðaÞ

ðrW2 � ðDeff
g Þ
�1 u!W2Þ � n2


! ¼ �ðrW1 � ccj�1
1 ðW1Þ u!Þ � n1


! on R ðbÞ
W2 ¼W in on ð@XÞ1 ðcÞ
@W2
@n ¼ 0ð@XÞ3; ð@XÞ5 ðdÞ

8>>>><
>>>>:

ð4:6Þ
where (4.6b) is posted by the fact (4.4), W1 will be iteratively updated in (4.6b) by solving subproblem Q1. Both subproblems
Q1 and Q2 own Dirichlet boundary conditions, which ensure their well-posedness.

The definitions of subproblems Q1 and Q2 imply that we need to solve subproblems Q1 and Q2 iteratively for
(W1,W2) 2 H2(X1) � H2(X2) with an appropriate initial guess ðW0

1;W
0
2Þ. Such iteration is usually called Dirichlet–Neumann

alternating iteration method.
In order to formulate the Dirichlet–Neumann algorithm in a weak formulation, we introduce the following spaces

V1 :¼ H1ðX1Þ;V2 :¼ fv2 2 H1ðX2Þjv2jð@XÞ1 ¼ 0g; �V2 :¼ fv2 2 H1ðX2Þjv2jð@XÞ1 ¼W ing;V0
1 :¼ fv1 2 V1jv1jR ¼ 0g;V0

2 :¼ fv2 2 V2jv2

jR ¼ 0g;K :¼ fk 2 H
1
2ðRÞjk ¼ v jR;v 2 V2g. The space K is equipped with a norm kkkK :¼ infv jR¼k;v2V2kvk1;X2

. Since the diffusiv-
ity C2 is constant, by the definition of Kirchhoff transformation (4.1), j�1

2 : K ? K is an isomorphism. The operator j1 is
strictly monotonically increasing and Lipschitz continuous, thus kj1kk1

2;R
6 kj1k1;Rkkk1

2;R
6 CkkkK, where the norm of

H
1
2ðRÞ is defined as
kkk2
1
2;R
¼ kkk2

0;R þ
Z

R

Z
R

jkðxÞ � kðyÞj2

jx� yj2
dxdy:
This implies j1j�1
2 maps K to H

1
2ðRÞ, which is required in (4.7b).

By using (�,�)X and ð�; �ÞXi
to stand for the L2 inner product in X and Xi (i = 1,2), respectively, we define nonlinear Dirichlet–

Neumann alternating iteration scheme for (3.7) in terms of the weak form as follows. Given k0
2 2 K, first of all, find Wkþ1

1 2 V1

for each k P 0 such that
ðrWkþ1
1 ;rv1ÞX1

¼ ðcc u!j�1
1 ðW

k
1Þ;rv1ÞX1

þ
R
ð@XÞ6

IðxÞ
2F v1 dx; 8 v1 2 V0

1 ðaÞ

Wkþ1
1 jR ¼ j1 j�1

2 ðk
k
2Þ

� �
; on R ðbÞ

8<
: ð4:7Þ
Let Ri (i=1, 2) be any continuous extension operator from K to Vi. Then in terms of the latest Wkþ1
1 2 V1 obtained from (4.7),

we successively find Wkþ1
2 2 �V2 for each k P 0 such that
ðrWkþ1
2 ;rv2ÞX2

� ððDeff
g Þ
�1 u!Wkþ1

2 ;rv2ÞX2
¼ �

R
ð@XÞ3
ðDeff

g Þ
�1 u!Wkþ1

2 � n!v2 dx; 8 v2 2 V0
2 ðaÞ

ðrWkþ1
2 ;rR2lÞX2

� ððDeff
g Þ
�1 u!Wkþ1

2 ;rR2lÞX2
þ
R
ð@XÞ3
ðDeff

g Þ
�1 u!Wkþ1

2 � n!R2ldx

¼ �ðrWkþ1
1 ;rR1lÞX1

þ ðcc u!j�1
1 ðW

k
1Þ;rR1lÞX1

þ
R
ð@XÞ6

IðxÞ
2F R1ldx; 8l 2 K ðbÞ

8>>><
>>>: ð4:8Þ
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and set
kkþ1
2 ¼ hWkþ1

2 jR þ ð1� hÞkk
2; ð4:9Þ
where kkþ1
2 2 K; h 2 ð0;1Þ is damping parameter.

In particular, for given l 2K, we choose harmonic extension R1l with Dirichlet boundary data l on R, and homogeneous
Neumann boundary conditions on other boundaries of X1; also choose harmonic extension R2l with Dirichlet boundary data
l on R, zero on (oX)1, and homogeneous Neumann boundary conditions on other boundaries of X2.

Obviously, (4.7) corresponds to subproblem Q1, and (4.8) is associated with subproblem Q2.
The algorithm of implementing nonlinear Dirichlet–Neumann alternating iteration scheme (4.7)–(4.9) is given in the following:

Algorithm A1. For k P 0,

1. Solve (4.7) for Wkþ1
1 with kk

2 first.
2. Solve (4.8) for Wkþ1

2 with Wkþ1
1 secondly.

3. Update kkþ1
2 with Wkþ1

2 and kk
2 in terms of (4.9), and determine if the following stopping criteria hold:
kkkþ1
2 � kk

2kL2ðRÞ < tolerance:
If yes, stop. Otherwise, go back to the first step and continue.

The convergence of above Dirichlet–Neumann alternating iteration method for a nonlinear diffusion equation (without convec-
tion term) in one dimension can be theoretically proved in [6]. For our general convection–diffusion equation it is still an open ques-
tion. However, numerical results shown in Section 7 suggest that this method converges uniformly with respect to the mesh size h.

As mentioned in Section 3, this method can be applied to the case of a dry channel as well. In Section 7, we will numer-
ically verify the validity of our method presented in this section for both dry and wet channels.

5. Combined finite element-upwind finite volume methods

In comparison to the relatively small diffusion coefficients, the convection coefficients arising in momentum and concen-
tration equations are dominant due to large flow present in the gas channel, which inevitably induces numerical instability
and solution oscillations. It is crucial to design a robust numerical scheme to efficiently solve convection-dominated diffu-
sion equations. This is another difficulty that prevents the entire nonlinear iteration from convergence besides the discon-
tinuous and degenerate diffusivity in the water concentration equation. In this section we study an efficient scheme, which
appropriately fits in the framework of finite element method, to automatically deal with the dominant convection terms
arising from momentum and water concentration equations.

To deal with the dominant convection terms, in principle, upwind scheme is usually adopted for finite-difference method
and finite-difference based finite volume method [21,19,20], versus the methods of artificial viscosity in the framework of
finite element method such as streamline-diffusion scheme [17,16,23,28,34] and Galerkin-least-squares scheme
[14,38,39,10] for convection-dominated diffusion problems and Navier–Stokes equations with high Reynolds number.

Due to the advantages of utilizing finite element method to conveniently deal with an irregular domain, flux (Neumann)
boundary conditions, and most importantly, provide a highly accurate approximation to the real solution, we primarily
choose finite element method to discretize a well-posed partial differential equation with given boundary conditions. How-
ever, for convection-dominated problems, the methods of artificial viscosity are just barely satisfactory, because their stabil-
ization parameters, on the magnitude of O(h), are difficult to properly choose for nonlinear problems. Therefore, the upwind
scheme turns out to be a better choice in a manner of automatically updating its upwind parameter although it cannot di-
rectly work for finite element method due to its finite-difference based feature.

In order to combine all the power of both finite element method and upwind scheme together, we introduce a combined
finite element-upwind finite volume method [12,13,11] for the PEFC model in this section, where a finite volume based fi-
nite-difference upwind scheme is adopted to specifically deal with dominant convection term only, meanwhile, all the other
terms are still discretized by finite element method. By doing this, we are able to take into account the irregular domain and
natural boundary condition as well as dominant convection term without tuning any stabilization parameters.

Without loss of generality, let us choose (4.8a) as an example to demonstrate how the combined finite element-upwind
finite method works for the PEFC model. In the following we will employ finite element method to discretize the diffusion
(Laplacian) term, and describe how to apply upwind finite volume method to the convection term in (4.8a).

To discretize weak form (4.8a) with finite element method for a certain iteration step k (for simplicity, we omit k in this
section), we firstly choose finite element space V2

h 	 �V2 which consists of piecewise linear polynomial on a quasi-uniform
mesh T 2;h with mesh size h in X2,h (a polygonal approximation of the domain X2). We define the following finite element
discretization for (4.8a). Find Wh;2 2 V2

h such that for any vh 2 V2
h;0 	 V0

2

rWh;2;rvh

� �
X2;h
� ðDeff

g Þ
�1 u!Wh;2;rvh

� �
X2;h

þ
Z
ð@XÞ3
ðDeff

g Þ
�1 u!Wh;2 � n!vh dx ¼ 0: ð5:1Þ
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where ð�; �ÞX2;h
stands for the L2 inner product in X2,h. The diffusion term in (5.1) is suited for finite element discretization.

Here we introduce an upwind finite volume scheme to deal with the convection term in (5.1).
First, we reformulate (5.1) into a new discretization form containing the true divergent-type convection term as follows:
rWh;2;rvh

� �
X2;h
þ r � ððDeff

g Þ
�1 u!Wh;2Þ;vh

� �
X2;h

�
Z

R
ðDeff

g Þ
�1 u!Wh;2

� �
� n2

!vh dx ¼ 0: ð5:2Þ
where, the boundary integral term on (oX)3 vanishes because it is remerged to the divergent-type convection term, and a
new interfacial boundary integral term on R appears instead.

For the simplicity of notations, let us begin with a generic divergent-type convection term in weak form ðr � ð b!pÞ; qÞ first,
where b

!
is a known large vector, p and q are the trial and test functions, respectively, which all belong to the same finite

element space V2
h .

Let Ph ¼ fPi; i 2 Jg be the set of all vertices of all element T 2 T 2;h, where J is a suitable index set. We let Ĵ ¼ fi 2 J; Pi 2 X2;hg
to represent the set of interior vertices in X2,h, i.e. those vertices which locate on oX2,h are not counted in Ĵ. Now let us con-
struct the dual mesh Dh ¼ fXi; i 2 Ĵg over the basic mesh T 2;h. The dual finite volume Xi associated with a vertex Pi 2 Ph is a
closed polygon obtained in the following way: we join the center of gravity of every element T 2 T 2;h that contains the vertex
Pi with the center of every side of T containing Pi. If Pi 2 Ph \ @X2;h, then we complete the obtained contour by the straight
segments joining Pi with the centers of boundary sides (i.e. sides which are subsets of oX2,h) that contain Pi. In this way, we
get the boundary oXi of the finite volume Xi. (See Fig. 5.1). It is obvious that X2;h ¼

S
i2ĴXi. The interiors of Xi,i 2 Ĵ, are mutu-

ally disjoint.
Based on above dual mesh Dh, we derive the following finite volume discretization:
ðr � ð b!pÞ; qÞX ¼
XN

i¼1

Z
Xi

r � ð b!pÞqdx 

XN

i¼1

qi

Z
Xi

r � ð b!pÞdx ¼
XN

i¼1

qi

I
@Xi

ð b!� n!Þp ds

¼
XN

i¼1

qi

X
Pj2@Ki

Z
Cij

ð b!� n!Þp ds 

XN

i¼1

qi

X
Pj2@Ki

Z
Cij

ð b!� n!Þpmij
ds



XN

i¼1

qi

X
Pj2@Ki

Z
Cij

ð b!� n!Þðrijpi þ ð1� rijÞpjÞ ds; ð5:3Þ
where Xi is the control volume of vertex Pi, which is encompassed by its patch Ki, Fig. 5.1 shows a patch K1 associated with
vertex P1, and Pj 2 oK1 (j – 1). Cij is a portion of oXi, the internal lines which intersect with element edge eij ¼ PiPj at mid-
point mij, therefore @Xi ¼

P
Pj2@Ki

Cij.
In (5.3) we make three approximations. The first is the approximation of test function q in the control volume Xi with the

evaluation of q at vertex Pi. The second approximation is made for the numerical quadrature of trial function p in the bound-
ary integration on Cij, where we use pmij

by evaluating p at the midpoint mij of the intersected edge eij. In the third approx-
imation, we introduce upwind scheme to calculate pmij

:

pmij
¼ rijpi þ ð1� rijÞpj; ð5:4Þ
where rij is the upwind parameter, automatically determined by the following formula:
rij ¼
1 if Fij > 0;
0 if Fij < 0;
0:5 if Fij ¼ 0;

8><
>: ð5:5Þ
where Fij ¼
R
Cij
ð b!� n!Þds is called numerical flux. (5.5) implies rij + rji = 1. By numerical flux Fij, (5.3) can be rewritten as
ðr � ð b!pÞ; qÞX 

XN

i¼1

qi

X
Pj2@Ki

Fijðrijpi þ ð1� rijÞpjÞ ¼
XN

i¼1

qi

X
Pj2@Ki

Z
Cij

ð b!� n!Þdsðrijpi þ ð1� rijÞpjÞ: ð5:6Þ
Fig. 5.1. Control volume X1 in 2D dual mesh encompassed by broken lines in patch K1.
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Apparently Fij = � Fji.
In (5.6) it is crucial to correctly compute numerical flux Fij in 2D rectangle or triangle elements, as shown in Fig. 5.1. To

this end, we need to calculate the dot product of average convective vector b
!

av and outer normal vector n! on each line seg-
ment contained in Cij, then the sum of the numerical fluxes at each line segment gives birth to Fij, where one of the endpoint
of each line segment locates at the midpoint mij of line segment PiPj, and the other endpoint is the element center c.

Average convective vector b
!

av can be easily obtained by averaging b
!

at two endpoints of each line segment. We define
dot product b

!
av � n! on each line segment of Cij in terms of the unit orthogonal vector t

!
of n!. For instance, on the line seg-

ment mijc in Fig. 5.1, we take t
!¼ mijc



!
jmijc


!

j
. Then n!� t

!¼ 0. The following identity holds for two orthogonal vectors n! and t
!

in
two-dimensional space:
j b!av � n!j ¼ j b!av � t
!j; ð5:7Þ
where, the sign of b
!

av � n! is determined by the direction of cross product b
!

av � t
!

. By Right Hand Rule, if b
!

av � t
!

points
upward, then b

!
av � n! is positive, otherwise negative. Thus, in practice, a partial numerical flux Fijjmijc

, which is the restriction
of Fij on the line segment mijc, is approximated by Trapezoidal Rule of numerical quadrature as follows:
Fijjmijc
¼
Z

mijc
ð b!� n!Þds 
 jmijc



!jð b!av � n!Þ:
Considering (5.7) and the definition of vector t
!

, we derive the magnitude of Fijjmijc
as follows:
jFijjmijc
j 
 jmijc



!jj b!av � n!j ¼ j b!av �mijc


!j:
Here the sign of jFijjmijc
j is determined by the direction of cross product b

!
av �mijc



! described as above.
By applying (5.6) to the divergent-type convection term in (5.2), we obtain the combined finite element-upwind finite

volume discretization for (4.8a) as follows: find Wh;2 2 V2
h such that for any vh 2 V2

h;0
rWh;2;rvh

� �
X2;h
�
Z

R
ðDeff

g Þ
�1 u!Wh;2

� �
� n2

!vh dxþ

XN

i¼1

vh;i

X
Pj2@Ki

Z
Cij

ðDeff
g Þ
�1 u!� n!

h i
ds rijWh;2;i þ ð1� rijÞWh;2;j
� �

¼ 0;

ð5:8Þ
where upwind parameter rij is determined by (5.5), the corresponding numerical flux Fij is defined as
Fij ¼
Z

Cij

ðDeff
g Þ
�1 u!h � n!

h i
ds:
We will also apply the same upwind finite volume scheme to the convection term in momentum Eq. (2.1a) in Section 6.

6. Numerical methods

In this section we design a decoupled finite element-upwind finite volume discretization for Navier–Stokes Eq. (2.1) with
Picard’s linearization scheme and a reformulated water concentration Eq. (3.7) with nonlinear Dirichlet–Neumann alternating
iteration scheme (4.7)–(4.9).

Picard’s linearization for Navier–Stokes Eq. (2.1) With given ð u!k;CkÞ from the kth step, find ( u!kþ1; Pkþ1) such that for
k = 0,1,2, . . .
1
e2r � ðqk u!k u!kþ1Þ ¼ r � ðlkr u!kþ1Þ � rPkþ1 � lk

K u!kþ1;

r � u!kþ1 ¼ �rqk

qk � u!k;

8<
: ð6:1Þ
where we reformulate (2.1b) to be r � u!¼ �rq
q � u! in order to be consistent with pressure term in momentum equation

(2.1a). Thus, an exact saddle-point problem is produced and the weak solutions of (6.1) are guaranteed by Babuska–Bre-
zzi–Ladyzhenskaya condition [26].

Weak forms: we define the spaces U :¼ fv!¼ ðvx;vyÞ> 2 ½H1ðXÞ�2jvxjð@XÞ1 ¼ uxjinletg and W: = L2(X). Then the mixed weak
forms for (2.1) on the basis of Picard’s linearization (6.1) are presented as follows: find ð u!kþ1; Pkþ1Þ 2 U�W, such that for any
ðv!; qÞ 2 U�W
ðlkr u!kþ1;rv!ÞX þ 1
e2r � ðqk u!k u!kþ1Þ; v!
� �

X
� ðPkþ1;r � v!ÞX þ ðl

k

K u!kþ1; v!ÞX ¼ 0

ðr � u!kþ1; qÞX ¼ �ð
rqk

qk � u!k; qÞX

8<
: ð6:2Þ
In Dirichlet–Neumann alternating iteration scheme (4.7)–(4.9), Picard’s linearization method has been applied to the weak
forms of Q1 and Q2, the two subproblems of reformulated water concentration Eq. (3.7).
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Combined finite element-upwind finite volume discretizations Corresponding to weak form (6.2), we apply mixed finite ele-
ment method to Navier–Stokes Eq. (2.1), and standard finite element method to Dirichlet–Neumann alternating iteration
scheme (4.7)–(4.9), except their convection terms which are discretized by upwind scheme.

First of all, along the GDL/gas channel interface R in X as shown in Fig. 2.2, we define a quasi-uniform triangulation T h

with the maximum mesh size h in Xh (a polygonal approximation of the domain X). Then T h ¼ T 1;h [ T 2;h, where T 1;h and
T 2;h are a quasi-uniform mesh in X1,h and X2,h, respectively. Obviously Xh = X1,h [X2,h. Let ð�; �ÞXh

and ð�; �ÞXi;h
ði ¼ 1;2Þ stand

for the L2 inner product in Xh and Xi,h (i = 1,2), respectively.
To discretize weak form (6.2) in mixed finite element method, we introduce finite element space Sh = Uh �Wh 	U �W

on T h, where Uh consists of piecewise quadratic functions, and Wh consist of piecewise linear functions. Sh is exactly the well
known space of Taylor–Hood element, one type of stable mixed finite element specifically for saddle-point variational prob-
lem [3]. The purpose of this choice for finite element space Sh is to approximate the velocity with quadratic element (P2), and
pressure and concentration with linear element (P1), simultaneously, on the theoretical basis of Babuska–Brezzi–Ladyzhens-
kaya condition and its discrete form [26].

On the other hand, we employ the combined finite element-upwind finite volume method to discretize Dirichlet–Neu-
mann alternating iteration scheme (4.7)–(4.9). We define finite element spaces as the following piecewise linear polynomial
spaces V1

h 	 V1;V
1
h;0 	 V0

1 on T 1;h and V2
h 	 �V2;V

2
h;0 	 V0

2 on T 2;h, and let Vh ¼ V1
h � V2

h. Consequently, on the GDL/channel
interface R, we define Kh 2K as the space of piecewise linear finite elements in 1D, corresponding to the triangulation.

Let Ri,h (i = 1,2) be any continuous extension operator from Kh to Vi
h, and based on the weak forms (6.2), (4.7)–(4.9), we

define the following decoupled mixed and standard finite element discretizations, combining with upwind finite volume
scheme to deal with the dominant convection terms in momentum equation and concentration equation, respectively.

Find ð u!kþ1
h ; Pkþ1

h Þ 2 Sh (k = 0,1,2, . . .), such that for any given ðv!; qÞ 2 Sh
ðlðCk
hÞr u!kþ1

h ;rv!ÞXh
� ðPkþ1

h ;r � v!ÞXh
þ lðCk

hÞ
K u!kþ1

h ; v!
� �

Xh

þ
PN
i¼1

v i
P

Pj2@Ki

1
e2

R
Cij

qðCk
hÞ u!k

h � n!
� �

ds rij u!kþ1
h;i þ ð1� rijÞ u!kþ1

h;j

� �
¼ 0 ðaÞ

ðr � u!kþ1
h ; qÞXh

¼ � rqðCk
hÞ

qðCk
hÞ
� u!k

h; q
� �

Xh

; ðbÞ

8>>>>>>>><
>>>>>>>>:

ð6:3Þ
where rij is determined by (5.5) with the following numerical flux:
Fij ¼
1
e2

Z
Cij

qðCk
hÞ u!k

h � n!
� �

ds:
In (6.3), Ck
h is obtained from Wk

h in the iteration process by using inverse Kirchhoff transformation (3.10). Since Wk
h 2 Vh, then

Ck
h 2 Vh in view of the definition of Kirchhoff transformation and the fact that C(C) is a rational function of C.

After u!kþ1
h is obtained from (6.3), with a view to (5.8), we define the combined finite element-upwind finite volume

discretizations for Dirichlet–Neumann alternating iteration scheme (4.7)–(4.9) as follows. Given k0
h;2 2 Kh, find

Wkþ1
h ¼ ðWkþ1

h;1 ;W
kþ1
h;2 Þ 2 V1

h � V2
h , for each k P 0 such that
rWkþ1
h;1 ;rv1

h

� �
X1;h

¼ cc u!kþ1
h j�1

1 ðW
k
h;1Þ;rv1

h

� �
X1;h

þ
R
ð@XÞ6

IðxÞ
2F v1

h dx; 8v1
h 2 V1

h;0 ðaÞ

Wkþ1
h;1jR ¼ Ihj1 j�1

2 ðk
k
h;2Þ

� �
; inK ðbÞ

8><
>: ð6:4Þ
and
rWkþ1
h;2 ;rv2

h

� �
X2;h

�
R

R ðD
eff
g Þ
�1 u!kþ1

h Wkþ1
h;2

� �
� n2

!v2

h dx

þ
PN2

i¼1
v2

h;i

P
Pj2@Ki

R
Cij
ðDeff

g Þ
�1 u!kþ1

h � n!
h i

ds rijW
kþ1
h;2;i þ ð1� rijÞWkþ1

h;2;j

� �
¼ 0; 8v2

h 2 V2
h;0 ðaÞ

ðrWkþ1
h;2 ;rR2;hlhÞX2;h

�
R

R ðD
eff
g Þ
�1 u!kþ1

h Wkþ1
h;2

� �
� n2

!R2;hlh dx

þ
PN2

i¼1
R2;hlh;i

P
Pj2@Ki

R
Cij
ðDeff

g Þ
�1 u!kþ1

h � n!
h i

ds rijW
kþ1
h;2;i þ ð1� rijÞWkþ1

h;2;j

� �
¼ �ðrWkþ1

h;1 ;rR1;hlhÞX1;h
þ ðcc u!kþ1

h j�1
1 ðW

k
h;1Þ;rR1;hlhÞX1;h

þ
R
ð@XÞ6

IðxÞ
2F R1;hlh dx; 8lh 2 Kh ðbÞ

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ð6:5Þ
where Ih in (6.4b) represents a linear interpolation operator which maps any space of smooth functions into V1
h . R1,h and R2,h

are the discrete harmonic extensions of R1 and R2, respectively. N2 denotes the number of grid points in triangulation T 2. rij is
determined by (5.5) with the following numerical flux
Fij ¼
Z

Cij

ðDeff
g Þ
�1 u!kþ1

h � n!
h i

ds:
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We update kkþ1
h;2 with some damping parameter h 2 (0,1) as follows
kkþ1
h;2 :¼ hWkþ1

h;2jR þ ð1� hÞkk
h;2: ð6:6Þ
To numerically computerWkþ1
h;1 on the right hand side of (6.5), in practice, we employ the technique of global L2 projection-

recovered gradient [35]. In addition, rq(C) in both (6.3) and (6.5) can be rewritten as rqðCÞ ¼ ðql � qgÞrs ¼ ðql � qgÞ=
ðql

M � CsatÞrC:
Numerical algorithms: we state the algorithm of implementing finite element discretizations (6.3)–(6.6) as follows.

Algorithm A2. For k P 0, given u!0
h;C

0
h , the following procedures are successively executed:

1. Solve (6.3) for ð u!kþ1
h ; Pkþ1

h Þ first.
2. In terms of Algorithm A1, solve (6.4)–(6.6) with given k0

2 ¼ kk
h;2, and obtain Wkþ1

h ¼ ðWkþ1
h;1 ;W

kþ1
h;2 Þ for k P 0.

3. Calculate Ckþ1
h with Wkþ1

h in terms of Newton’s method of inverse Kirchhoff transformation (3.10).
4. Determine if the following stopping criteria hold
k u!kþ1
h � u!k

hkL2ðXÞ þ kP
kþ1
h � Pk

hkL2ðXÞ þ kk
kþ1
h;2 � kk

h;2kL2ðRÞ

k u!k
hkL2ðXÞ þ kP

k
hkL2ðXÞ þ kk

k
h;2kL2ðRÞ

< tolerance; ð6:7Þ
which is the relative convergence error in two successive iteration steps. If yes, then numerical computation is complete.
Otherwise, go back to the first step and continue.

Assignment of initial guesses: now we discuss the initial guesses ð u!0
h;C

0
hÞ for (6.3)–(6.6). Although there is no certain way to

specify the initial guesses, in practice, they can usually be given in terms of boundary conditions and physical phenomena. It
is well known that the flow profile is parabolic once laminar flow is fully developed in long, straight channel, under steady-
state conditions. Based on this fact, we are able to assign the initial profile of velocity as follows by preserving the same total
flow flux with the case of constant horizontal velocity uin at the inlet
ðu0
hÞx ¼

p
2 uin sinð y

dCH
pÞ; x ¼ 0;0 6 y 6 dCH ðinletÞ

0; elsewhere

(
ð6:8Þ

ðu0
hÞy ¼ 0;W0

h ¼W in;
where ðu0
hÞx is the x-component of u!0

h. We use a sine function to approximate ðu0
hÞx as a parabolic-like function at the inlet, an

approximation of laminar flow in long, straight channel, whose the highest velocity uin (m/s) occurs at the center of inlet
(y ¼ dCH

2 ) and quadratically decays to zero on the boundary wall. This initial guess is close to the real case of parabolic flow
in the gas channel, thus helping to attain good convergence for nonlinear iteration. As a consequence, in the following
numerical experiments, we assign the Dirichlet boundary condition of velocity at the inlet as follows
uxjinlet ¼
p
2

uin sinð y
dCH

pÞ; 0 6 y 6 dCH: ð6:9Þ
Considering Kirchhoff transformation (3.1) does not depend on the spatial domain but only concentration variable, we can
directly generalize it to the three-dimensional situation. Consequently numerical discretizations (6.3)–(6.6) are readily
extendable to a three-dimensional PEFC model without any difficulty.
7. Numerical experiments

The inlet velocity of air and current density I at the membrane/cathode surface significantly affect the distribution of
water in both gas channel and GDL. A smaller entry velocity (uin < 3 m/s), which experiences rapid saturation of the gas phase
by water vapor, results in a wet channel filled partially with liquid water. Similarly, higher transfer current density I creates a
two-phase region in the gas channel.

In this section, we illustrate these physical expectations with the numerical methods mentioned in Section 6 by varying
inlet velocities and current densities I for a wet channel in Case 1, 2 and a dry channel in Case 3, through which, we simul-
taneously exhibit the efficiency, accuracy of our new numerical techniques, and the generality of our Dirichlet–Neumann
alternating iterative domain decomposition method for both dry and wet channels.

We firstly define triangulation T h with 20 intervals in the length of fuel cell along x-direction, 30 and 25 intervals in the
width of gas channel and GDL, respectively, along y-direction. So the number of total grid points in T h is (20 + 1) �
(30 + 25 + 1) = 1176. The tolerance of our stopping criteria (6.7) for the outer nonlinear iteration in Algorithm A2 and inner
nonlinear iteration in Algorithm A1 are all 10�10. In the following numerical experiments, we adopt a single damping
parameter of h = 0.8 for our Dirichlet–Neumann alternating iteration method in Algorithm A1. To solve the discretized linear
algebraic system, we employ a direct solver and GMRES iterative solver, depending on the number of degree of freedom.
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Case 1: Cin = 14 mol/m3,uin = 2 m/s, average current density I = 1.5 A cm�2: we create a wet channel case by reinforcing
Cin = 14 mol/m3,uin = 2 m/s at the inlet of gas channel, and assign liquid water mass flux condition at the membrane/cathode
surface with average current density I ¼ I1þI2

2 ¼ 1:5 A cm�2. By employing numerical discretizations (6.3)–(6.6) and Algorithm
A1 and Algorithm A2, we obtain a reasonable solution (see Figs. 7.3–7.8) within 11 outer nonlinear iteration steps in Algo-
rithm A2, and up to 14 inner Dirichlet–Neumann alternating iteration steps in Algorithm A1. Fig. 7.1 displays the fast conver-
gence process with Kirchhoff transformation and Dirichlet–Neumann alternating iteration method, and oscillating iteration
without Kirchhoff transformation, respectively.

As an example, in this case we do more computations to display the uniform convergence of Dirichlet–Neumann alternat-
ing iterative domain decomposition method in Algorithm A1. Table 7.1 shows the iteration history of this method for Case 1,
specifically. It is typically produced for the first outer nonlinear iteration step in Algorithm A2, where the velocity is given by
initial guess (6.8). In Table 7.1, we find that the number of nonlinear iteration step is independent of the mesh size h, which is
always 14 iterations along with decreasing h under the same tolerance of iteration stopping criteria 10�10. Here the maxi-
mum mesh size h ¼ lPEFC

k , where k is the number of mesh interval in the length of PEFC and the width of gas channel, as well
as k/2 in the width of GDL.

Fig. 7.2 displays a similar convergence path on each globally refined mesh level for Dirichlet–Neumann alternating itera-
tion method, which is a quasi-linearly converging process with respect to iteration number, and independent of maximum
mesh size h as well.

In the following, the focus is placed on elucidating numerical results shown in Figs. 7.3–7.8, where the interface of gas
channel and GDL is indicated by a bold line.

Figs. 7.3–7.6 shows the velocity field of the two-phase mixture in the GDL and gas channel. As expected, there is a large
difference in the velocity scale between the porous region and the open channel. The mixture velocity in GDL is at least two
orders of magnitude smaller than that in the open channel, indicating that gas diffusion is the dominant transport mecha-
nism in porous GDL. The flow field in the open channel is fully developed in view of the large aspect ratio of the channel, as
can be seen in Fig. 7.6 where the channel length is, however, not drawn to scale for better view.

The figure at the bottom of Fig. 7.7 displays the water concentration distribution whose value is below Csat, indicating
absence of liquid water in the porous cathode and flow channel. As the air flows down the channel, water is continuously
added by the electrochemical reaction, resulting in an increased water vapor concentration along the channel. As a result,
liquid water may first appear in the vicinity of the membrane/cathode interface towards the channel outlet, and gradually
Fig. 7.1. Iteration histories of (left) FEM with Kirchhoff transformation and Dirichlet–Neumann alternating iteration; (right) standard FEM without Kirchhoff
transformation and with Picard’s iteration.

Table 7.1
Nonlinear iteration information of Dirichlet–Neumann alternating iteration with decreasing maximum mesh size h ¼ lPEFC

k .

Step k = 8 k = 16 k = 32 k = 64 k = 128 k = 256

1 6.121E-02 7.447E-02 8.176E-02 8.558E-02 8.753E-02 8.852E-02
2 1.223E-02 1.487E-02 1.632E-02 1.708E-02 1.746E-02 1.766E-02
3 2.435E-03 2.956E-03 3.241E-03 3.390E-03 3.467E-03 3.506E-03
4 4.846E-04 5.871E-04 6.433E-04 6.727E-04 6.878E-04 6.955E-04
5 9.643E-05 1.166E-04 1.277E-04 1.335E-04 1.364E-04 1.380E-04
6 1.918E-05 2.316E-05 2.533E-05 2.648E-05 2.707E-05 2.737E-05
7 3.817E-06 4.598E-06 5.027E-06 5.253E-06 5.369E-06 5.429E-06
8 7.594E-07 9.132E-07 9.974E-07 1.042E-06 1.065E-06 1.077E-06
9 1.511E-07 1.814E-07 1.979E-07 2.068E-07 2.113E-07 2.136E-07
10 3.006E-08 3.602E-08 3.928E-08 4.102E-08 4.192E-08 4.238E-08
11 5.980E-09 7.153E-09 7.794E-09 8.138E-09 8.316E-09 8.406E-09
12 1.190E-09 1.421E-09 1.547E-09 1.615E-09 1.650E-09 1.668E-09
13 2.367E-10 2.821E-10 3.069E-10 3.203E-10 3.273E-10 3.308E-10
14 4.710E-11 5.603E-11 6.091E-11 6.355E-11 6.493E-11 6.562E-11



Fig. 7.2. Same convergence history of Dirichlet–Neumann alternating iteration with decreasing maximum mesh size h ¼ lPEFC
k .

Fig. 7.4. Vertical two-phase mixture velocity when Cin = 14 mol/m3,uin = 2 m/s, I = 1.5 A cm�2.

Fig. 7.3. Horizontal two-phase mixture velocity when Cin = 14 mol/m3, uin = 2 m/s, I = 1.5 A cm�2.

Fig. 7.5. Pressure when Cin = 14 mol/m3,uin = 2 m/s, I = 1.5 A cm�2.
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Fig. 7.8. Liquid water-saturation when Cin = 14 mol/m3,uin = 2 m/s, I = 1.5 A cm�2. The evaporation front separating the two-phase zone from the single-
phase region is approximately represented by s = 0.03.

Fig. 7.6. Two-phase mixture velocity field when Cin = 14 mol/m3,uin = 2 m/s, I = 1.5 A cm�2.

Fig. 7.7. Concentrations of entire water (top) and water vapor (bottom) when Cin = 14 mol/m3,uin = 2 m/s, I = 1.5 A cm�2.
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spread to result in a wet channel, as can be seen at the top of Fig. 7.7, where the liquid water, signaled by the water concen-
tration greater than Csat, occupies the most of the GDL/channel interface near the outlet.

In accordance with Fig. 7.7, liquid water is seen in the most upper-right part of Fig. 7.8 to coexist with the saturated water
vapor. The largest liquid amount predicted in Fig. 7.8 is around 7.8% at the average current density of 1.5 A cm�2.

Mass balance error In order to verify the correctness of our numerical solutions, we compute the error of mass balance
between the inlet and outlet.

First of all, we derive the mass balance equation based on the water concentration Eq. (2.5) for the gas channel. By inte-
grating both sides of (2.5b) over the entire domain, we get
�
Z
@X

Deff
g
@C
@n

dsþ
Z
@X

C u!� n! ds ¼ 0 ð7:1Þ
where n! denotes the outer normal vector, @C
@n represents the normal derivative of concentration C, and s is the arc length

coordinate on the boundary. By substituting boundary conditions assigned in Section 2.3 and (6.9) for the boundary integrals
in (7.1) and applying (2.11), we get the following approximate mass balance equation:



Table 7
Converg

Mesh s

7. � 10
3.5 � 1
1.75 �

P. Sun et al. / Journal of Computational Physics 228 (2009) 6016–6036 6033
Z
@Xoutlet

Cuxds�
Z
@Xinlet

Cinuxjinletds ¼
Z

PEFC

0

IðsÞ
2F

ds ¼ I1 þ I2

4F
lPEFC; ð7:2Þ
where we drop the normal diffusional flux
R
@Xinlet

Deff
g

@C
@n ds at the inlet by simply assuming @C

@n 
 0 therein. In fact, @C
@n ¼ 0 is

physically true at channel inlet in the respect that, in practice, the input gas has been well developed in external pipe before
it arrives at the channel inlet of the fuel cell. We provide Dirichlet boundary condition C = Cin instead of @C

@n ¼ 0 at channel inlet
based on the consideration of the uniqueness of numerical solution. Otherwise the unique solution of water concentration
does not exist because the homogeneous Neumann boundary condition is everywhere on oX. On the other hand, since the
large gradient of concentration always occurs in the places that are far away from the inlet, in the sense of numerical approx-
imation, @C

@n indeed practically vanishes at the channel inlet.
Mass balance Eq. (7.2) indicates that the net incremental mass equals the outcome due to the source term, here it is the

resultant of electrochemical reaction occurring at the membrane/cathode surface. Consequently the relative error of mass
balance is defined as follows:
mass balance error ¼

R
@Xoutlet

Cuxds�
R
@Xinlet

Cinuxjinlet ds� I1þI2
4F lPEFC

��� ���R
@Xinlet

Cinuxjinlet ds
ð7:3Þ
By inserting the computed concentration C and velocity ux into (7.3), and computing those integrals in terms of one simple
numerical quadrature, say, trapezoidal quadrature rule, we attain a convergent mass balance error from the numerical solu-
tions along with decreasing dimidiate mesh size h, as shown in Table 7.2.

Table 7.2 numerically reveals that the convergent mass balance error is decreasing along with the decreasing mesh size h,
and the same result is also obtained in Case 2.

Case 2: Cin = 14 mol/m3,uin = 2 m/s, average current density I = 2 A cm�2 Keep the same entry concentration and velocity as
Case 1, we increase the average current density to 2 A cm�2 in this case by assigning I1 = 25,000 A/m2 and I2 = 15,000 A/m2. In
this case, more water is produced at the membrane/cathode surface and liquid water is expected to appear in the gas chan-
nel, namely a wet channel case. By numerically simulating this case within only 11 outer iteration steps in Algorithm A2, and
up to 10 inner Dirichlet–Neumann alternating iteration steps in Algorithm A1, we attain reasonable numerical solutions that
supports our expectation, as shown in Fig. 7.9. Comparing with Fig. 7.7 in Case 1, the two-phase region in Fig. 7.9 is extended
further towards the inlet of the gas channel, implying that more liquid water accumulates in the gas channel.

The mass balance error of numerical solutions holds the convergence with decreasing mesh size h, as shown in Table 7.3,
together with fast convergence of the numerical iteration, indicating again the good accuracy of this case Similarly, Dirichlet–
Neumann alternating iteration still holds uniform convergence within 10 inner iteration steps in the first outer iteration step,
along with deceasing dimidiate mesh size h. We omit the corresponding table and diagram of convergence history here.
.2
ent mass balance error for the case of Cin = 14 mol/m3, uin = 2 m/s, I = 1.5 A cm�2

ize (h) Mass balance error

�3 1.165 � 10�1

0�3 8.411 � 10�2

10�3 3.353 � 10�2

Fig. 7.9. Concentrations of entire water (top) and water vapor (bottom) when Cin = 14 mol/m3,uin = 2 m/s, I = 2 A ;cm�2.



Table 7.3
Convergent mass balance error for the case of Cin = 14 mol/m3, uin = 2 m/s, I = 2 A cm�2

Mesh size (h) Mass balance error

7. � 10�3 1.257 � 10�1

3.5 � 10�3 6.414 � 10�2

1.75 � 10�3 1.151 � 10�2

Fig. 7.10. Concentrations of entire water (top) and water vapor (bottom) when Cin = 14 mol/m3,uin = 3 m/s, I = 1.5 A cm�2.

Table 7.4
Mass balance error for the case of Cin = 14 mol/m3, uin = 3 m/s, I = 1.5 A cm�2 with mesh size h = 3.5 � 10�3

Outlet flux Fout 4.4996 � 10�2 mol/m�s
Inlet flux Fin 4.1962 � 10�2 mol/m�s
Source S 5.4411 � 10�3 mol/m�s
Mass balance error jFout�Fin�Sj

Fin
5.7364 � 10�2
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Case 3: Cin = 14 mol/m3,uin = 3 m/s, average current density I = 1.5 A cm�2 We intend to build a dry gas channel in this case by
using a larger inlet velocity than Case 1. The numerical methods is obtained within 11 outer nonlinear iteration steps in Algo-
rithm A2, and up to 10 inner Dirichlet–Neumann alternating iteration steps in Algorithm A1.

The contours of water concentration are typically illustrated in Fig. 7.10, where the water concentration below Csat, indic-
ative of the gas phase only, occupies the entire gas channel and a big part of the porous GDL. The interface between the two-
phase zone and single-phase region is confined inside the GDL, giving rise to a dry channel, as shown in Fig. 7.10.

We also attain a relatively accurate mass balance error for the gained numerical solutions in this case of dry gas channel,
as shown in Table 7.4.

8. Conclusions

Numerical experiments indicate that the oscillating nonconvergent nonlinear iteration is a common problem in the
numerical simulation of two-phase transport for the cathode of a polymer electrolyte fuel cell. We have found that the dis-
continuous and degenerate diffusivity in the water concentration equation and the dominant convection coefficients in the
gas channel are two crucial reasons to prevent the entire nonlinear iteration from convergence.

We demonstrate that Kirchhoff transformation is effective in solving the water concentration equation with a discontin-
uous and degenerate diffusivity. It is a key component of the efficient and stable numerical methodology developed here.
Further, an efficient Newton’s method is introduced to treat the important inverse Kirchhoff transformation. This method sig-
nificantly decreases the number of iteration and saves the computational cost for the simulation of two-phase water
transport.

To handle the case of a wet gas channel, we introduce a domain decomposition method, Dirichlet–Neumann alternating
iteration, to solve the reformulated water concentration with Kirchhoff transformation, which also works equally well for a
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dry gas channel. Numerical experiments suggest that our numerical technique efficiently solves the problem of discontinu-
ous solutions across the GDL/channel interface. These arise in the case of a wet channel due to the application of Kirchhoff
transformation, and eventually produces fast and convergent nonlinear iteration as well as accurate numerical solutions, as
compared to oscillating iterations with standard finite element or finite volume methods without Kirchhoff transformation.

In addition, in our decoupled Picard’s linearization for Navier–Stokes equations and Dirichlet–Neumann alternating itera-
tion for the water concentration equation, in order to automatically control dominant convection coefficients in the gas
channel, we employ combined mixed and standard finite element-upwind finite volume method for momentum and water
concentration equations, respectively. This method does not require any stabilization parameter and play a critical role in
attaining fast iteration as well as stable and accurate solutions.
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